

Wuchshüllen in der Forstwirtschaft -(k)ein Ende des Booms? 15 May 2018

Treeshelters : designing the perfect climate?

Christian Dupraz, INRA, France

Various concerns

A key observation : Stem diameter growth unbalanced

Well, what's wrong with treeshelters ?

Early hypotheses about tree growth in treeshelters

- Main Hypothesis: excess of humidity
- Experiments in 1986 and 1987 (Cornwall & Mid England)
- Perforate tubes to increase ventilation, hence decrease humidity within the treeshelters.
- Disappointing : erratic results on growth

Experiment 1986 Cornwall

1.2 m Treeshelters

First ventilated treeshelters

1986 Cornwall

No significant differences bw treeshelters.

1Year: significant difference bw Control (mesh guard) & Treeshelters

Experiment 1987 Cornwall & Mid-England

1.2 m Treeshelters

First Ventilated treeshelters

1987 Cornwall and Mid-England– 3 growing seasons

Increased ventilation significantly improved the growth height of Beech.

Good soil

Poor soil

Control: mesh guard

• But what if....

Height growth was NOT the key issue?

These experiments lack a key combination?

• This was the start of a long investigation

A long story .. in 7 papers

- Dupraz, C., 1997. Greenhouse effect shelters for seedlings. Part 1. How trees react. Revue Forestiere Francaise (Nancy) 49, 417-432.
 - Dupraz, C., 1997. Greenhouse effect shelters for seedlings. Part 2 : Increasing their efficiency by optimized ventilation and greater light exposure. Revue Forestiere Francaise (Nancy) 49, 519-530.
 - Bergez, J.E., Dupraz, C., 1997. Transpiration rate of Prunus avium L seedlings inside an unventilated tree shelter. Forest Ecology and Management 97, 255-264.
 - Dupraz, C., Bergez, J.E., 1999. Carbon dioxide limitation of the photosynthesis of Prunus avium L. seedlings inside an unventilated treeshelter. Forest Ecology and Management 119, 89-97.
- Bergez, J.E., Dupraz, C., 2000. Effect of ventilation on growth of Prunus avium seedlings grown in treeshelters. Agricultural and Forest Meteorology 104, 199-214.
- Coutand, C., Dupraz, C., Jaouen, G., Ploquin, S., Adam, B., 2008. Mechanical Stimuli Regulate the Allocation of Biomass in Trees: Demonstration with Young Prunus avium Trees. Ann Bot 101, 1421-1432.

Bergez, J.-E., Dupraz, C., 2009. Radiation and thermal microclimate in tree shelter. Agricultural and Forest Meteorology 149, 179-186.

Long-term experiments on hybrid walnut trees

Standard unventilated brown 1.8 m tall treeshelters

Long-term experiments on hybrid walnut trees

Standard unventilated brown 1.8 m tall treeshelters

Key finding 1

Early DBH growth more important than early height growth

Impact of treeshelters on the root/shoot balance

Année	Auteur	Site	Essence	-	le biomasse rraine
				Témoins	Abrités
1988	Dupraz,	Montpellier,	Merisier	48	33
	données	conteneurs	Noyer commun	75	54
	inédites		Noyer noir	79	67
			Noyer hybride	73	64
1989	Bergez,	Montpellier,	Merisier	60	33
	1993	conteneurs	Noyers hybrides	85	66
1990	Bergez,	Montpellier,	Merisier	57	42
	1993	conteneurs			
1991	Bergez,	Montpellier,	Merisier	65	38
	1993	pleine terre	Noyer commun	83	64
1991	Cemagref	Montoldre,	Merisier	65	39
	données	(Allier) pleine	Noyer commun	82	70
	inédites	terre			
1992	Balandier et	Montoldre	Merisier	51	35
	al, 1995	(Allier) pleine	Noyer commun	79	59
		terre			

Moyenne	Merisier	58	37
	Noyers	79	63

Abris de 120 cm, standards (non ventilés)

20% shift of the total biomass to the aboveground biomass in treeshelters

Key finding 2

Root deficit with treeshelters

1997

Forest Ecology and Management 97 (1997) 255-264

Forest Ecology and Management

Transpiration rate of *Prunus avium* L. seedlings inside an unventilated treeshelter

J.-E. Bergez¹, C. Dupraz^{*}

Trees in treeshelters... save a lot of water!

While their stomata are wide open

Tree Leaf temperature very close to air temperature in treeshelters

Very small VPD in treeshelters

But the key finding is :

Unventilated treeshelter with a wild cherry tree

But the key finding is : extremely fast Air CO₂ depletion

Unventilated treeshelter with a wild cherry tree

Key finding 3

Photosynthesis impeded by lack of CO₂

Fig. 1. Design and set-up of the treeshelters used in experiments A, B and C.

Photo 1 : Dispositif expérimental de Notre-Dame de Londres (Hérault) sur merisier : comparaison de différentes modalités d'abris-serres modifiés en luminosité et aération sur la croissance des arbres

Air temperature cooling by the chimney effect

Les températures sont mesurées à 80 cm de hauteur dans les abris

Tree transpiration stimulation by the chimney effect

Improved photosynthesis at low radiation levels in treeshelters

Fig. 5. Net assimilation flux density of *Prunus avium* leaves versus available radiation for sheltered and control trees. Day: 4 July; Air temperature: 26.5°C; Relative humidity: 38%; $[CO_2]$: 360 µl l⁻¹.

Tree photosynthesis stimulation by the chimney effect

J.-E. Bergez, C. Dupraz/Agricultural and Forest Meteorology 104 (2000) 199-214

204

Fig. 4. Diurnal variations of CO_2 concentration inside different types of treeshelters. Data recorded on 4 September 1991 at mid-canopy height.

Key finding 4

When CO₂ is back, more light is useful

Ventex Equilibre Treeshelter

FIG. 1. The experimental device for bending sheltered trees. (A) View of the SB treatment. (B) The stem inside the shelter is attached to two fixed points and a moving arm piloted by an air-pressurised piston imposes a lateral displacement, which results in the bending of the stem.

1423

Prunus avium (cv Monteil)

Biomass in % of the tota biomass

FIG. 6. Biomass partitioning between shoots and roots before and after treatments, expressed as a percentage of the total biomass of the tree.

Key finding 5

Stem swinging and bending by wind is important

The sooner the tree emerges from the shelter, the better. So height growth is important

Ventilation failures

- When water stress is too high
- When light availability is too reduced
- When the seedlings emerge from the shelter very early or from the start

Light transmission of visible light of 4 twin walled treeshelters

Light green colour provides:

- High light transmission close to non pigmented tube (Photosynthesis),
- Good mix of blue and red radiation for the Photo Active Radiation while keeping the tubes green for blending in the fields.
- Red/Far Red =0.94 (Photomorphogenesis).

Summer Day time

Temperature due to air flow

Dupraz C., Bergez J.E., Amelioration de protections individuelles d'arbres a effet de serre. Patent 9204295.1, February 1992 See also USA study: B. R. Swistock, K.A. Mecum, W.L. Sharpe, Summer temperatures insode ventilated and unventilated brown plasic treeshelters in Pennsylvania, NJAF, 1999, 16(1), 7-10.

Standard

Minimum CO_2 Excess H_2O H_2O

Ventilated

Optimum CO_2 Good H_2O

Over ventilated

Maximum CO_2 Low H_2O

49

Ventex and walnut tree

Ventex

Ventex and red oak

New Beech Shelters

Take home messages

- Early Diameter growth is more important than early height growth
- CO₂ is more important than humidity
- Light is required when CO₂ is available

• Stem movement is the ultimate challenge

Take home message

 Never use unventilated shelters if the tree canopy spends more than 2 growing seasons fully inside the shelter

- With unventilated shelters,
 - the short term positive impact on height growth is deceptive.
 - the long term impact on DBH growth is negative.

Vielen Dank für Ihre Aufmerksamkeit

20-25 May 2019

Le Corum Conference Center Montpellier, France

https://agroforestry2019.cirad.fr/

